43,245 research outputs found

    Magnetic field amplification by cosmic rays in supernova remnants

    Full text link
    Magnetic field amplification is needed to accelerate cosmic cays to PeV energies in supernova remants. Escaping cosmic rays trigger a return current in the plasma that drives a non-resonant hybrid instability. We run simulations in which we represent the escaping cosmic rays with the plasma return current, keeping the maximum cosmic ray energy fixed, and evaluate its effects on the upstream medium. In addition to magnetic field amplification, density perturbations arise that, when passing through the shock, further increase amplification levels downstream. As the growth rate of the instability is most rapid for the smaller scales, the resolution is a limiting factor in the amplification that can be reached with these simulations.Comment: 4 pages, 2 figures, to appear in the proceedings of the conference "370 years of Astronomy in Utrecht", eds. G. Pugliese, A. de Koter and M. Wijbur

    Cosmic ray acceleration in young supernova remnants

    Full text link
    We investigate the appearance of magnetic field amplification resulting from a cosmic ray escape current in the context of supernova remnant shock waves. The current is inversely proportional to the maximum energy of cosmic rays, and is a strong function of the shock velocity. Depending on the evolution of the shock wave, which is drastically different for different circumstellar environments, the maximum energy of cosmic rays as required to generate enough current to trigger the non-resonant hybrid instability that confines the cosmic rays follows a different evolution and reaches different values. We find that the best candidates to accelerate cosmic rays to ~few PeV energies are young remnants in a dense environment, such as a red supergiant wind, as may be applicable to Cassiopeia A. We also find that for a typical background magnetic field strength of 5 microG the instability is quenched in about 1000 years, making SN1006 just at the border of candidates for cosmic ray acceleration to high energies.Comment: 14 pages, 8 figures. Accepted for publication in MNRA

    Confining the high-energy cosmic rays

    Full text link
    Diffusive shock acceleration is the prime candidate for efficient acceleration of cosmic rays. Galactic cosmic rays are believed to originate predominantly from this process in supernova remnant shock waves. Confinement of the cosmic rays in the shock region is key in making the mechanism effective. It has been known that on small scales (smaller than the typical gyroradius) high-amplitude non-resonant instabilities arise due to cosmic ray streaming ahead of the shock. For the efficiency of scattering of the highest energy cosmic rays it is of interest to determine the type of instabilities that act on longer length scales, i.e. larger than the cosmic ray gyroradius. We will present the results of our analysis of an instability that acts in this regime and will discuss its driving mechanism and typical growth times.Comment: 4 pages, 1 figure. Proceedings for the conference on Cosmic Rays and the Interstellar Medium (CRISM) in June 2011, Montpellier, France. To appear in MSA

    From cosmic ray source to the Galactic pool

    Full text link
    The Galactic cosmic ray spectrum is a remarkably straight power law. Our current understanding is that the dominant sources that accelerate cosmic rays up to the knee (3×10153 \times 10^{15} eV) or perhaps even the ankle (3×10183 \times 10^{18} eV), are young Galactic supernova remnants. In theory, however, there are various reasons why the spectrum may be different for different sources, and may not even be a power law if nonlinear shock acceleration applies during the most efficient stages of acceleration. We show how the spectrum at the accelerator translates to the spectrum that make up the escaping cosmic rays that replenish the Galactic pool of cosmic rays. We assume that cosmic ray confinement, and thus escape, is linked to the level of magnetic field amplification, and that the magnetic field is amplified by streaming cosmic rays according to the non-resonant hybrid or resonant instability. When a fixed fraction of the energy is transferred to cosmic rays, it turns out that a source spectrum that is flatter than E2E^{-2} will result in a E2E^{-2} escape spectrum, whereas a steeper source spectrum will result in an escape spectrum with equal steepening. This alleviates some of the concern that may arise from expected flat or concave cosmic ray spectra associated with nonlinear shock modification.Comment: 5 pages, 1 figure. Accepted for publication in MNRA

    High-efficiency cell concepts on low-cost silicon sheets

    Get PDF
    The limitations on sheet growth material in terms of the defect structure and minority carrier lifetime are discussed. The effect of various defects on performance are estimated. Given these limitations designs for a sheet growth cell that will make the best of the material characteristics are proposed. Achievement of optimum synergy between base material quality and device processing variables is proposed. A strong coupling exists between material quality and the variables during crystal growth, and device processing variables. Two objectives are outlined: (1) optimization of the coupling for maximum performance at minimal cost; and (2) decoupling of materials from processing by improvement in base material quality to make it less sensitive to processing variables

    Absence of Electron Surfing Acceleration in a Two-Dimensional Simulation

    Full text link
    Electron acceleration in high Mach number perpendicular shocks is investigated through two-dimensional electrostatic particle-in-cell (PIC) simulation. We simulate the shock foot region by modeling particles that consist of three components such as incident protons and electrons and reflected protons in the initial state which satisfies the Buneman instability condition. In contrast to previous one-dimensional simulations in which strong surfing acceleration is realized, we find that surfing acceleration does not occur in two-dimensional simulation. This is because excited electrostatic potentials have a two-dimensional structure that makes electron trapping impossible. Thus, the surfing acceleration does not work either in itself or as an injection mechanism for the diffusive shock acceleration. We briefly discuss implications of the present results on the electron heating and acceleration by shocks in supernova remnants.Comment: 12 pages, 4 figures, accepted for publication in ApJ

    Non-Bilocal Measurement via Entangled State

    Full text link
    Two observers, who share a pair of particles in an entangled mixed state, can use it to perform some non-bilocal measurement over another bipartite system. In particular, one can construct a specific game played by the observers against a coordinator, in which they can score better than a pair of observers who only share a classical communication channel.Comment: 6 pages. minor change

    Actions speak louder than words: designing transdisciplinary approaches to enact solutions

    Get PDF
    Sustainability science uses a transdisciplinary research process in which academic and non-academic partners collaborate to identify a common problem and co-produce knowledge to develop more sustainable solutions. Sustainability scientists have advanced the theory and practice of facilitating collaborative efforts such that the knowledge created is usable. There has been less emphasis, however, on the last step of the transdisciplinary process: enacting solutions. We analyzed a case study of a transdisciplinary research effort in which co-produced policy simulation information shaped the creation of a new policy mechanism. More specifically, by studying the development of a mechanism for conserving vernal pool ecosystems, we found that four factors helped overcome common challenges to acting upon new information: creating a culture of learning, co-producing policy simulations that acted as boundary objects, integrating research into solution development, and employing an adaptive management approach. With an increased focus on these four factors that enable action, we can better develop the same level of nuanced theoretical concepts currently characterizing the earlier phases of transdisciplinary research, and the practical advice for deliberately designing these efforts

    Turning Contention into Collaboration: Engaging Power, Trust, and Learning in Collaborative Networks

    Get PDF
    Given the complexity and multiplicity of goals in natural resource governance, it is not surprising that policy debates are often characterized by contention and competition. Yet at times adversaries join together to collaborate to find creative solutions not easily achieved in polarizing forums. We employed qualitative interviews and a quantitative network analysis to investigate a collaborative network that formed to develop a resolution to a challenging natural resource management problem, the conservation of vernal pools. We found that power had become distributed among members, trust had formed across core interests, and social learning had resulted in shared understanding and joint solutions. Furthermore, institutions such as who and when new members joined, norms of inclusion and openness, and the use of small working groups helped create the observed patterns of power, trust, and learning

    Testing quantum nonlocality by generalized quasiprobability functions

    Full text link
    We derive a Bell inequality based on a generalized quasiprobability function which is parameterized by one non-positive real value. Two types of known Bell inequalities formulated in terms of the Wigner and Q functions are included as limiting cases. We investigate violations of our Bell inequalities for single photon entangled states and two-mode squeezed vacuum states when varying the detector efficiency. We show that the Bell inequality for the Q function allows the lowest detection efficiency for violations of local realism.Comment: 6 pages, 3 figure
    corecore